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                    ABSTRACT 

 

We present the numerical performance of two 

parameterization schemes, Singular Value 

Decomposition (SVD) and wavelets, for solving 

automated parameter estimation problems using the 

Simultaneous Perturbation Stochastic Approximation 

(SPSA) algorithm. The two schemes are tested on a suit 

of two large scale two-phase flow problems that illustrate 

potential for addressing large-scale EQM inverse 

problems using high-performance computing (HPC).  

 

 

1. INTRODUCTION 

 

In this paper we present the numerical performance of 

three parameterization approaches, SVD, wavelets, and 

the combination of wavelet-SVD  for solving automated 

parameter estimation problems based on the SPSA 

described in previous reports of this project ([7, 8]). In 

brief terms, the parameterization methods are based on 

the principle of projecting the original parameter space 

onto a lower-dimensional space.  In most cases, these 

projections are computed in terms of SVD (for non-

symmetric and rectangular operators), Krylov subspace 

methods, fast Fourier and wavelet transforms, to name a 

few alternatives. We conducted the numerical 

experiments comparing SPSA by using the 

aforementioned parameterization schemes. It will  be 

shown that the SVD using 50% of the singular values 

and wavelet level 3 performed extremely well on two test 

cases of 128x128 gridblocks: channelized (structured)  

and random (non-structured) permeability fields. We 

now demonstrate its capabilities for performing 

parameter estimation using a HPC platform. 

 

 

2 PROBLEM FORMULATION 

 
A general parameter estimation problem can be written 

as a nonlinear least squares problem       

 

                    ( ) ( )1( ) ( ) ( ) .      
T

d
f x G x d C G x d−= − −    (1)        

 The first term measures the mismatch between the 

simulated G(x) and the observed data d, and the 

observation covariance matrix 
dC  represents the errors 

in the data.  In our particular case, we assume the matrix 

to be the identity matrix, and that the model parameter x 

is the permeability, which is dependent on space. The 

vector of measurements d may be obtained at different 

locations and time intervals.  In our particular case, we 

assume that those measurements are pressures 

observations for the stationary case. We use SPSA, see 

(Argaez et al., 2007; Klie et al., 2006; Quintero, 2007) to 

optimize Problem (1). 

 

 

3  PARAMETERIZATION METHODS 

 

In order to reduce the number of parameters being 

optimized, we project the original parameter space onto a 

lower-dimensional space using a parameterization 

scheme. We consider two schemes: SVD and wavelets.  

For completeness, we provide a brief description of the 

parameterization methods being used with SPSA. 

 

3.1   SVD 
 

In this method, we assume that the vector of model 

parameters x is given by a 2-D permeability field 
nh nvK ×∈ℜ . Moreover, we define log( )x K=  to avoid 

high-local variations of permeability.  By applying the 

SVD approach, x can be decomposed as follow:  
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with ,
nh nh

U
×

∈ℜ the columns of which are composed by 

the horizontal covariance matrix xx
T
,  ,

nv nv
V

×
∈ℜ  the 

columns of which are composed by the vertical 

covariance matrix x
T
x, and  ,

nh nv×
Σ ∈ℜ  is a rectangular 
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matrix with diagonal entries 
1 2 0,rσ σ σ≥ ≥ ≥ >�  where 

( )min ,r nh nv=  and 
iσ  is the thi  singular value of x. 

 

Let xi be the thi  eigen-image of x that forms an 

orthogonal basis. Clearly, the contribution of the 

thi eigen-image to the construction of x  depends on the 

magnitude of
iσ . The error that results from the partial 

reconstruction can be shown to be equal to the 

summation of the discarded singular values, thus, 

providing an indicator of the number of eigen-images 

required to reconstruct the original field within a 

prescribed threshold error. This approach has been 

successfully applied in several permeability estimation 

problems (Argaez et al., 2007; Banchs et al., 2006; Klie 

et al., 2006) . 

 

The SVD parameterization boils down to finding the 

singular values that control the relevant scales of each 

eigen-image into the estimation.  In this work we analyze 

this strategy by using a 50% of the total number of 

singular values. 

 

3.2  Wavelet 

 

Wavelet transforms have been used in many 

subsurface applications showing important potentials for 

multiscale parameter estimation (Argaez et al., 2007; 

Rodriguez et al., 2004, 2006). The basic idea is to 

separate the parameter space representation into distinct 

frequency packets that are localized in the space or time 

domain. The parameter space can be conveniently 

separated in different scales at a low computational cost 

since wavelets have a compact support (eg, see Liu, 

1993;  Sahni, and Horne,2006).  

 

 Mathematically, the wavelet transform is a method 

that projects a function f(x) onto various vector spaces 

that represent different scales. Suppose that this function 

represents a continuous distribution of a particular 

hydrological property (e.g., permeability or porosity). 

The measurement of these properties can be realized as  

                     ( ) ( ) ( ) ,F x t f t x dt

∞

−∞

= Θ −∫                       (3)                                 

where  Θ(x), is an averaging kernel such that  

                            ( ) 1.x dx

∞

−∞

Θ =∫                                   (4)                                                                          

 

This kernel function is a kind of moving average 

function that is zero outside the region of interest.  Thus, 

different local characteristics of f(x) can be defined by 

choosing a suitable kernel function. Moreover, any 

scaling of f(x) can be obtained by scaling the kernel 

function.  In this sense the kernel function Θ(x) acts as a 

low-pass filter or smoothing function.  In a few words, 

the projection of f(x) occurs by successive approximation 

of  f(x) through the function Θ(x).   

 

Additionally, details loss between two successive 

scales can be captured using the so-called wavelet 

function Ψ(x). Computing inner products  f(x), Θ(x) and  

Ψ(x) and proceeding in a recursive fashion,  f(x) can then 

be  represented at any desired scale. In this report, we 

work with resolution scale of wavelet level 3. 

 

3.2 SPSA 

 

SPSA is based on a highly efficient gradient 

approximation that uses only two function measurements 

regardless of the dimension of the gradient vector, and it 

is able to find a good approximation to the solution using 

few function values (Spall, 1992, 1998).  Its 

disadvantage is that once we have a good approximation, 

it may not satisfy some conditions and constraints 

associated with the problem. In particular, SPSA has 

attracted considerable attention for challenging 

optimization problems where it is impossible to directly 

obtain the gradient of the objective function (Rodriguez, 

2004, 2007).  We use SPSA to find a solution of (1) in 

combination with the parameterization scheme. 

 

 

4    Large Scale Two-Phase Flow Problems 

 

We created two test problems of permeability fields as 

training images for the three parameterization schemes: 

channelized and random contrast.  Our goal is to estimate 

a permeability field xєR
128x128

 that computes a pressure 

data G(x) using a Matlab simulator that approximates a 

given pressure data d. The permeability measures the 

rock’s ability to transmit a single fluid at certain 

conditions. We redefine x=log(x) to avoid high-local 

variations of permeability.  Figures 1 and 2 show the true 

and priori log permeability and pressure fields of a 

channelized and random contrast test problems. 
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Figure 1.   The true (top) and priori (bottom) log 

permeability and pressure fields of the channelized 

problem. 

 

Figure 2. The true (top)  and priori (bottom) log 

permeability and pressure fields of the random problem. 

 

 

4.1 Sequential Case 

 

We ran SPSA Matlab version  13 in a Dell Laptop, 

and tabulate the best numerical results obtained for each 

method:  SPSA (non-parameterization), SPSA with 

parameterization  SVD with 50% of singular values, and 

parameterized SPSA with wavelet.  We use 5 initial 

random points and allow a maximum of 500 and 1000 

iterations for SPSA to find a solution for the channelized 

and random problems, respectively. 

 

In Tables 1-2 we compare the numerical results 

obtained for the two test problems when using the three 

parameterization schemes with its corresponding variants 

in conjunction with the SPSA method.  

 

For each table, the first column states the method 

being used with SPSA: no parameterization, SVD 

parameterization with 50% of singular values being 

used), Wavelet parameterization level 3, and Wavelet-

SVD (wavelet with 3 level combined with SVD using a 

50% of the singular values). We should remark that the 

wavelet level represent the resolutions of 16x16 (i.e. 64 

parameters to be optimized) for the given 128x128 data. 

The next three columns tabulates the parameter space, 

the number of SPSA iterations and function evaluations.  

The fifth column indicates the relative error RP between 

the predicted and observed data and it is given by: 

 

 RP=||FP –FO||/||FO||, 

  

where FP and FO denote the number of function 

evaluations performed by the parameterized SPSA and 

non-parameterized SPSA, respectively.  This is one of 

the metrics proposed in this paper. The last column 

indicates the ratio of the total number of function 

evaluations between the parameterized and non-

parameterized SPSA versions (FP/FO). 

 

We run the original SPSA until either RP ≤ 0.05 or 

the maximum number of SPSA iterations have been 

achieved (recall that there are 3 function evaluations in 

each SPSA iteration), then this value of RP becomes the 

target or stopping criteria for the parameterization 

methods. We expect the parameterized version will take 

less iterations due to the number of reduced parameters 

being involved for solving the problems. 

 

 

 

 

 

True permeability 

  True permeabilty 

True pressure 

  Priori permeability Priori  pressure 

True pressure 

  True permeability Priori pressure 
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Table 1. Numerical results generated for the channelized 

problem. 

Method n Iter #F RP FP/FO 

SPSA 16384 550 1650 0.0510 1.0000 

SVD 

(50%) 

64 41 123 0.0501 0.0745 

Wavelet 

3 

256 132 396 0.0503 0.2400 

Wavelet  

– SVD 

(50%) 

8 312 104 0.0552 0.1891 

 

Table 2. Numerical results generated for the random 

problem.  

Method n Iter #F RP FP/FO 

SPSA 16384 1000 3000 0.1045 1.0000 

SVD 

(50%) 

64 58 174 0.1042 0.0580 

Wavelet 

3 

256 87 261 0.1024 0.0870 

 

Wavelet  

–SVD 

(50%) 

8 216 72 0.1037 0.0720 

 

Table 1 shows that the best strategy for the 

channelized problem is the parameterized method SVD 

with 50% of the singular values (64 parameters 

optimized) that gives less number of iterations, and 

lowest value RP,  and the second option is Wavelet. In 

the case of the wavelet-SVD parameterization schemes 

did not converge after 100 iterations (Rp≥0.05). In the 

case of the random problem, the option wavelet gave the 

lowest RP value but in terms of function evaluations is 

better SVD with 50% with a competitive RP value.  

 

Figures 3-4 show the history of the function values 

at each iteration obtained for each of the test problems 

using the original SPSA and the parameterized versions 

using SVD, wavelet, and wavelet-SVD options. We 

observe that for both problems the non-parameterized 

SPSA takes considerable more iterations than the 

parameterized SPSA methods.  

 

 

Figure 3.  Channelized problem.  

 

Figure 4. Random problem. 
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Figure 5. Numerical results of the best permeability 

fields obtained for the channelized 

problem.

 

Figure 6. Numerical Results of the best pressure fields 

obtained for the channelized problem. 

Figure 7. Numerical results of the best permeability 

fields obtained for the random problem. 

 

        . 

Figure 8. Numerical Results of the best pressure fields 

obtained for random problem 

      True SVD (50%) 

  Wavelet (3)  Wavelet-SVD 

True 
    SVD (50%) 

     Wavelet (3)      Wavelet-SVD 

SVD (50%) 

      True       True      SVD (50%)       SVD (50%) 

    Wavelet (3)       Wavelet-SVD       Wavelet (3)    Wavelet-SVD 
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The results obtained for the two test problems were 

promising, therefore a numerical experimentation using 

HPC was considered in this final report. 

 

 

 5.  HPC Numerical Experimentation 

  

We run the each of the parameterization schemes 

with SPSA in conjunction with the Matlab simulator 

framework IPARS (Integrated Parallel Accurate 

Reservoir Simulator) (Rodriguez et al., 2004, 2007) on a 

UTEP machine Virgo. The problem consists of finding a 

permeability field that involves 16,394 parameters. The 

field is parameterized by SVD (Rodriguez et al., 2007) 

reducing the original parameter space to only 64. In the 

case of using wavelet level 3, it reduces to only 256 

parameters. 

 

The following figure illustrates the optimization 

scheme used to solve the two large scale problems. 

 

 

 
 

  

 

 

The UTEP’s  VIRGO machine is a Beowulf cluster 

that employs a front end and 20 compute nodes, each 

with 2 Intel Xeon 3.06 GHz processors and 4 GB main 

memory, 487 GB user disk space and a 139 peak Gflops 

rating. This machine has the Matlab and Wavelet toolbox 

installed on each of the 20 processors.   We only had 

access to up 16 processors, therefore the experimentation 

was done using 1, 2, 4, 8, and 16 processors. We did not 

use a machine with 256-512 processors to conduct our 

experimentation because the Matlab Wavelet toolbox 

was not available at the machine. Such requirement was 

needed to be bought for each of the processors, and the 

funds were not available. 

 

For each problem, we run the following methods: 

non-parameterization, SVD with 50% of singular values 

and Wavelet level 3.  SPSA stopped if the maximum 

number of function evaluation of 500 was reached, i.e. 

only up to 166 iterations were allowed. We run a 

multistart SPSA on 1, 2, 4, 8 and 16 processors. A 

multistart SPSA consist in starting SPSA 16 times, and 

dividing the work in the number of processor available. 

We use the same initial point for each parameterization 

scheme, but SPSA uses a different random seed each 

time, so the final solution is different. 

 

In Tables 3-8 we tabulate the numerical results 

obtained for the two test problems when using non-

parameterization and the two parameterization schemes 

with the SPSA method.  We should remark that the SVD 

parameterization scheme was run using 50% of the 

singular values, and the wavelet level 3 represents the 

16x16 resolution for the given 128x128 data.  

  

For each table, the first column represents the 

number of processor P being used with SPSA to solve 

the problem, and the second column states the mean time 

TP taken to solve the problem. The third column indicates 

the mean relative error RP. The fourth column represents 

the speed up SP, and we rely on at least 16 processors to 

achieve a sustained  

 

1
P

P

T (F,1)
=   0.5,

T (P*F,P)
S ≥  

 

where F is the number of   function evaluations for a 

single processor and  TP(W,P) is the total wall clock time 

used for solving the optimization problem with W 

function evaluations on P processors. The last column 

indicates the efficiency defined by EP=SP/P. 

Table 3.  Non-parameterization results for the 

channelized problem. 

P TP RP SP EP 

1 4165.100 0.58352 1.000 1.000 

2 2097.800 0.56944 1.985 0.993 

4 1048.400 0.56128 3.973 0.993 

8 530.100 0.58907 7.857 0.982 

16 276.200 0.5955 15.080 0.943 

Initial  

permeability field 

 128 128x

x ∈ℜ

Parameterization Scheme 

 
ˆ ˆ( ),  with 128 128

and  is a projection (SVD,Wavelet)

p
xx x x p= Ψ ∈ℜ <<

Ψ

SPSA 

 
1

min  ( )  (1)

ˆwhere ( )

f x

x x
−= Ψ

 Solution 

 * 1 *ˆ( )x x
−

= Ψ

yes no Test 

 
( )f x ε<  

Fig. 9.  Flowchart of the optimization procedure. 
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Table 4. SVD parameterization results for the 

channelized problem. 

P TP RP SP EP 

1 4072.300 0.1824 1.000 1.000 

2 3714.400 0.1868 1.096 0.548 

4 1025.800 0.1856 3.970 0.992 

8 516.900 0.1847 7.878 0.985 

16 260.300 0.1841 15.644 0.978 

Table 5. Wavelet parameterization results for the 

channelized problem. 

P TP RP SP EP 

1 4548.400 0.27249 1.000 1.000 

2 2276.700 0.28680 1.998 0.999 

4 1136.600 0.28608 4.002 1.000 

8 577.100 0.28116 7.882 0.985 

16 290.800 0.26419 15.639 0.977 

 

 
Fig. 10. Numerical results of the mean error RP using 

different processors P obtained for the channelized 

problem. Parameterizations 

 
Figure 11. Numerical results of the speed up SP using 

different processors P obtained for the channelized 

problem via non-parameterization, SVD and Wavelet 

parameterizations. 

Table 6. Non-parameterization results for the random 

problem. 

P TP RP SP EP 

1 8522.300 0.815973 1.000 1.000 

2 4299.200 0.775318 1.982 0.991 

4 2244.800 0.787177 3.796 0.949 

8 1108.100 0.801091 7.691 0.961 

16   618.100 0.802728 13.788 0.862 
 

Table 7. SVD parameterization results for the random 

problem. 

 

P TP RP SP EP 

1 8191.700 0.511193 1.000 1.000 

2 4108.300 0.521353 1.994 0.997 

4 2110.800 0.524534 3.881 0.970 

8 1108.600 0.538929 7.390 0.924 

16 576.500 0.524443 14.210 0.888 

Table 8. Wavelet parameterization results for the random 

problem. 

P TP RP SP EP 

1 9014.700  0.500469 1.000 1.000 

2 4428.500   0.491750 2.036 1.018 

4 2280.800  0.527515 3.952 0.988 

8 1141.400  0.556861 7.898 0.987 

16 656.600   0.584490 13.729 0.858 

 

 
 

Fig. 12. Numerical results of error RP using different 

processors P obtained for the random problem via non-

parameterization, SVD and Wavelet parameterizations. 
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Fig. 13. Numerical results of speed up SP using different 

processors P obtained for the random problem via non-

parameterization, SVD and Wavelet parameterizations. 

 

 

 

6.    CONCLUSIONS 

 

 We have tested three parameterization methods to 

mitigate the curse of dimensionality that typically arises 

in many Department of Defense (DoD) parameter 

estimation scenarios. We have made a numerical 

assessment of SVD with 50% of singular values, wavelet 

level 3 and hybrid wavelet-SVD parameterization 

schemes.  The main challenge of the parameterization 

methods is to be able to capture all possible features 

from the parameter space into a lower dimensional space 

representation. 

 

  Our numerical results show that the proposed 

methods converge in significantly reduced number off 

iterations for a channelized and a random permeability 

field.  In view of this, it is highly suggested to the DoD 

users to incorporate some of these methods in their large-

scale parameter estimation work in order to increase 

efficiency and accuracy of subsurface property 

estimations that are subject to the curse of 

dimensionality.   
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